Faithful group actions and Schreier graphs

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Certain Integral Schreier Graphs of the Symmetric Group

We compute the spectrum of the Schreier graph of the symmetric group Sn corresponding to the Young subgroup S2 × Sn−2 and the generating set consisting of initial reversals. In particular, we show that this spectrum is integral and for n ≥ 8 consists precisely of the integers {0, 1, . . . , n}. This implies that these graphs form a family of expanders (with unbounded degree).

متن کامل

Notes on the Schreier graphs of the Grigorchuk group

The paper is concerned with the space of the marked Schreier graphs of the Grigorchuk group and the action of the group on this space. In particular, we describe the invariant set of the Schreier graphs corresponding to the action on the boundary of the binary rooted tree and dynamics of the group action restricted to this invariant set.

متن کامل

Faithful tropicalisation and torus actions

For any affine variety equipped with coordinates, there is a surjective, continuous map from its Berkovich space to its tropicalisation. Exploiting torus actions, we develop techniques for finding an explicit, continuous section of this map. In particular, we prove that such a section exists for linear spaces, Grassmannians of planes (reproving a result due to Cueto, Häbich, and Werner), matrix...

متن کامل

Group Codes and the Schreier matrix form

In a group trellis, the sequence of branches that split from the identity path and merge to the identity path form two normal chains. The Schreier refinement theorem can be applied to these two normal chains. The refinement of the two normal chains can be written in the form of a matrix, called the Schreier matrix form, with rows and columns determined by the two normal chains. Based on the Sch...

متن کامل

Maximal harmonic group actions on finite graphs

This paper studies groups of maximal size acting harmonically on a finite graph. Our main result states that these maximal graph groups are exactly the finite quotients of the modular group Γ = 〈 x, y | x = y = 1 〉 of size at least 6. This characterization may be viewed as a discrete analogue of the description of Hurwitz groups as finite quotients of the (2, 3, 7)-triangle group in the context...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Carpathian Mathematical Publications

سال: 2018

ISSN: 2313-0210,2075-9827

DOI: 10.15330/cmp.9.2.202-207